Exponents

Exponents are shortcuts to express a multiplication of a number by itself. Exponents tell you how many times you should multiply the number by. This process of using exponents is called 'raising to a power,' where the exponent is the 'power.'

For example: instead of writing $2 \times 2 \times 2$, you could write 2^3 . 2 is known as the base. 3 is the exponent or power.

Examples:

$$\begin{array}{rcl}
2^{2} & = 2 \times 2 = 4 \\
5^{2} & = 5 \times 5 = 25 \\
3^{3} & = 3 \times 3 \times 3 = 27
\end{array}$$

When the exponent or power is 2, the process is called squaring. It would be read 2 squared or 5 squared

When the exponent or power is 3, the process is called cubing. It would be read 2 cubed.

There are rules for exponents:

- Any number (except 0) raised to the zero power is equal to 1. $258^0 = 1$
- Any number raised to the first power is always equal to itself. $8^1 = 8$

Some rules to simplify how we express exponents:

Whenever you multiply two terms with the same base, you can add the exponents: $\frac{m}{m} = \frac{m+n}{m}$

$$(a^{m})(a^{n}) = a^{m+n}$$

$$(2^{3})(2^{6}) = 2^{9}$$

$$(125^{4})(125^{16}) = 125^{20}$$

$$(637^{13}) = (637^{20}) = 637^{33}$$

When you have an exponent expression that is raised to a power, you can multiply the exponent and power: $(a^m)^n = a^{mn}$

$$(2^{3})^{4} = 2^{12}$$

$$(76^{6})^{10} = 76^{60}$$

$$(203^{3})^{5} = 203^{15}$$

ightharpoonup If you have a product inside parentheses and a power on the parentheses, then the power goes on each element inside. $(a^m \ x \ b)^n = a^{mn} \ x \ b^n$.

$$(2^3 \times 4)^2 = 2^6 \times 4^2$$

Exponents (Cont'd)

This rule also applies to the following:

$$[a/b]^m = (a^m) / (b^m)$$

$$[3/8]^4 = (3^4) / (8^4)$$

This rule does not apply to additions or subtractions that are in parenthesis. For example, if you have $(3+4)^2$, then you cannot apply the abovementioned rule and distribute the power to both numbers. It would be wrong if you simplified: $(3+4)^2$ and wrote: (3^2+4^2) . In order to simplify or solve $(3+4)^2$, you would first solve what is inside the parenthesis, which is the addition operation, then you would raise it to the second power. This means:

$$(3+4)^2 = (7)^2$$

= 49

Exponents Questions

Multiple Choice:

- 1. Exponents are shortcuts to refer to:
 - a. Adding a number to itself
 - b. Subtracting a number from itself
 - c. Multiplying a number by itself
 - d. Dividing a number by itself
- 2. Whenever you multiply two terms with same base, you can:
 - a. Add the exponents
 - b. Subtract the exponents
 - c. Multiply the exponents
 - d. Divide the exponents
- 3. (5^2) (5^6) can be simplified into the following:
 - a. 5¹²
 - b. 5⁸
 - c. 5
 - d. 5²⁶
- 4. $(2,879^{34})^0$:
- a. 0
- b. 1
- c. 2,879
- d. None of the above

Matching:

_____ 5. (678)⁰

a. (678)⁶

____ 6. (678)¹

b. 1

- 7. $(678^2)^3$

c. 678

True or False:

- _____ 9. $(8/7)^3$ can be simplified into $(8)^3 / (7)^3$.
- ____ 10. $(6+2)^2$ can be simplified into (6^2+2^2)

Exponents Answers

Multiple Choice:

- 1. Exponents are shortcuts to refer to:
 - a. Adding a number to itself
 - b. Subtracting a number from itself
 - c. Multiplying a number by itself
 - d. Dividing a number by itself
- 2. Whenever you multiply two terms with same base, you can:
 - a. Add the exponents
 - b. Subtract the exponents
 - c. Multiply the exponents
 - d. Divide the exponents
- 3. (5^2) (5^6) can be simplified into the following:
 - a. 5¹²
 - b. 5⁸
 - c. 5
 - d. 5^{26}
- 4. $(2,879^{34})^0$:
- a. 0
- b. 1
- c. 2,879
- d. None of the above

Matching:

__b__ 5. (678)⁰

a. (678)⁶

<u>c</u> 6. (678)¹

b. 1

 \underline{a} 7. $(678^2)^3$

c. 678

True or False:

- __T__ 8. $(8/7)^3$ can be simplified into $(8)^3 / (7)^3$.
- **__F_** 9. $(6+2)^2$ can be simplified into (6^2+2^2)